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One of the fascinating developments in supramolecular
chemistry during the last decade is the construction of inter-
locked molecular structures such as catenanes, rotaxanes, and
knots.1 Pioneering work by Sauvage and Stoddart demonstrated
that such elegant structures can be achieved relatively easily
by use of metal templating and/or employment of noncovalent
interactions. Concurrent with this has been development of 2D
or 3D networks composed of linking metal centers and rigid
organic bridging components.2-9 These metal-organic frame-
work materials often exhibit interesting electronic8 and magnetic
properties9 as well as zeolite-like properties.4b,5c

We have recently reported10 a simple one-step approach to
construct 1D polyrotaxane coordination polymers containing a
cyclic “bead” in every structural unit of the polymer chain. It
involves the formation of a pseudorotaxane by threading a
molecular “bead” with a “string” having suitable functional
groups at both ends followed by the formation of a 1D
polyrotaxane coordination polymer by allowing the end func-
tional groups of the pseudorotaxane to coordinate to the metal
centers. Extending this approach, we now constructed an
unprecedented polyrotaxane containing cyclic beads threaded
on 2D coordination polymer networks. Moreover, the 2D
polyrotaxane networks are fully interlocked; therefore, it
represents the first example of polycatenated polyrotaxane nets.
Herein, we report the self-assembly and X-ray crystal structure
of the novel supramolecular species.

The formation of the pseudorotaxane3, by threading cucur-
bituril (1)11 with N,N'-bis(4-pyridylmethyl)-1,4-diaminobutane
dihydronitrate (2),12 followed by the reaction of3with AgNO3

yielded 4 (Scheme 1).13 The X-ray crystal structure14 of 4
reveals an unprecedented polyrotaxane in which cucurbituril
beads are threaded on a 2D coordination polymer network
(Figure 1). The 2D network consists of large edge-sharing
chair-shaped hexagons with a Ag(I) ion at each corner and a
molecule of2 at each edge connecting two Ag(I) ions. The
mean length of the edge is 20.9 Å, and the mean separation of
the opposite corners is 38.0 Å. Each silver ion, sitting on a
mirror plane, is coordinated by three “supermolecules” (3) and
a nitrate ion in a distorted tetrahedral geometry.15 A cucurbituril
bead is held tightly at the middle of each edge of the hexagon
by strong hydrogen bonds between the protonated amine
nitrogen atoms of the string (2) and the oxygen atoms of
cucurbituril. The 2D polyrotaxane network forms layers stacked
on each other along the [011] direction with a mean interplane
separation of 9.87 Å (Figure 2). There is another 2D polyro-
taxane network (denotedB) almost perpendicular to the first
one (denotedA). The dihedral angle between the mean planes
of the two networksA and B is 69.34°. These networks
interpenetrate with full interlocking of the hexagons, as il-
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lustrated in Figure 3: a hexagon belonging to the networkA
(blue) interlocked with four hexagons belonging toB (red) and
Vice Versa. Although interlocking of simple 2D networks has
been known (polycatenated 2D nets),2-9 the present structure
is the first example ofpolycatenated 2D polyrotaxane nets.
Counteranions seem to play an important role in determining

the solid state structure, since when silver tosylate is used instead
of silver nitrate to react with the pseudorotaxane3 the 1D
polyrotaxane coordination polymer5 is formed (Scheme 1). In
the structure of5 (Figure S3, Supporting Information)16 a two-
coordinate Ag+ ion links two molecules of pseudorotaxane3

to form an 1D polyrotaxane coordination polymer similar to
the one formed with Cu2+ ion.10 The major structural difference
between the two 1D polyrotaxane coordination polymers is that
the two pyridyl units are coordinated to the silver ion in atrans
geometry whereas they are bound to the copper ion in acis
geometry.10 As a result, the former has an almost straight
polymer chain whereas the latter exhibits a zigzag shaped
polymer chain.10

In conclusion, we present here an unprecedented polycat-
enated 2D polyrotaxane net in which cyclic beads are threaded
onto 2D coordination polymer networks that are in turn fully
interlocked with themselves. This interlocked supramolecular
network provides not only an intriguing example of chemical
topology but also a new possibility for designing “smart” solid
state materials.17 We continue to explore unusual supramo-
lecular species by utilizing the principles of self-assembly and
coordination chemistry.
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Figure 1. Cucurbituril “beads” threaded onto the 2D coordination
polymer network in4. The nitrate ion coordinated to each silver ion is
omitted for clarity. The mean length of the edge of the hexagon is
20.9 Å, and the mean separation of the opposite corners is 38.0 Å.
Color codes: carbon (2D network), gray; carbon (cucurbituril bead),
green; nitrogen, blue; oxygen, red; silver, brown.

Figure 2. Schematic representation of stacking of the 2D polyrotaxane
layers in 4. Small circles represent silver ions and lines represent
pseudorotaxane3 linking two silver ions. The mean separation between
the layers is 9.8 Å.

Figure 3. Schematic illustration representing interlocking of the
hexagons in4: a hexagon belonging to the networkA (blue) interlocked
with four hexagons belonging toB (red) andVice Versa. As in Figure
2, small circles represent silver ions and lines represent pseudorotaxane
3 linking two silver ions.
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